Matematika Teorema Pythagoras

Sebuah tiang tingginya 12 m berdiri tegak di atas tanah datar. Dari ujung atas tiang ditarik seutas tali ke sebuah patok pada tanah. Jika panjang tali 13 m, maka jarak patok dengan pangkal tiang bagian bawah adalah...

a. 5 m
b. 10 m
c. 20 m
d. 25 m

Teorema Pythagoras

Sebuah tiang tingginya 12 m berdiri tegak di atas tanah datar. Dari ujung atas tiang ditarik seutas tali ke sebuah patok pada tanah. Jika panjang tali 13 m, maka jarak patok dengan pangkal tiang bagian bawah adalah...

a. 5 m
b. 10 m
c. 20 m
d. 25 m

Pembahasan

Diketahui:

tinggi tiang = 12 m

panjang tali (hipotenusa) = 13 m

Ditanya:

jarak patok dengan pangkal tiang bagian bawah (a) = ?

Jawaban:

[tex] \sf a = \sqrt{ {c}^{2} - {b}^{2} } [/tex]

[tex] \sf a = \sqrt{ {13}^{2} - {12}^{2} } [/tex]

[tex] \sf a = \sqrt{169 - 144} [/tex]

[tex] \sf a = \sqrt{25} [/tex]

[tex] \sf a = 5 \: m[/tex]

Kesimpulan:

Jadi, jarak patok dengan pangkal tiang bagian bawah adalah 5 m (opsi A).

A. 5 m

Penjelasan dengan langkah-langkah:

Jarak² = Panjang tali² - Tinggi tiang²

Jarak² = 13² - 12²

Jarak² = 169 - 144

Jarak² = 25

Jarak = √25

Jarak = [tex] \underline{ \boxed{ \red{ \sf \: 5 \: m}}}[/tex]

[answer.2.content]